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Abstract—We are developing electromyographic and
electroencephalographic methods, which draw control signals
for human-computer interfaces from the human nervous system.
We have made progress in four areas: a) real-time pattern
recognition algorithms for decoding sequences of forearm
muscle activity associated with control gestures, b) signal-
processing strategies for computer interfaces using EEG
signals, c) a flexible computation framework for neuroelectric
interface research, d) non-contact sensors, which measure EMG
or EEG signals without resistive contact to the body.

Index Terms—Brain-computer interfaces, EEG, EMG,
neuroelectric interfaces, electric field sensors.

I. INTRODUCTION

E define a system that couples the human nervous
system electrically to a computer as a neuroelectric

interface: a sensing and processing system that can use signals
from the brain or from other parts of the nervous system, such
as peripheral nerves, to achieve device control. We regard
brain-computer interfaces or BCIs [1] as a subset of
neuroelectric interfaces. Our current focus is on using features
from electroencephalograms (EEG) and electromyograms
(EMG) as control signals for various tasks, such as aircraft or
vehicle simulations and other graphic displays.

Our long-term goals are to: a) develop new modes of
interaction that cooperate with existing modes such as
keyboards or voice, b) augment human-system interaction in
wearable, virtual, and immersive systems by increasing
bandwidth and quickening the interface, c) enhance situational
awareness by providing direct connections between the human
nervous system and the systems to be controlled. Our near-
term goals include: a) a signal acquisition and processing
system for real-time device control, b) automatic EMG-based
recognition and tracking of human gestures, c) feasibility
testing of EEG-based control methods.

In this paper we will survey selected results and
demonstrations of EMG- and EEG-based neuroelectric
interfaces. We will describe an EMG-based flight stick, an
EMG-based numeric keypad, an EEG-based interface for
smooth, continuous control of motion in a graphic display,
and comparison of algorithms for modeling the EEG patterns
associated with real and imagined hand motion. Finally, we
will discuss recent developments of non-contact electric field
sensors for EMG and EEG recording.

Our approach is to describe a body of developmental
research, which is still in progress, and to indicate methods
that have potential for engineering development. Given the
BCI focus of this special issue, descriptions of purely EMG-

based interfaces will be brief. We will describe the EEG
results and the new sensor developments in more detail.

II. EMG INTERFACES

A. EMG-based Flight Stick

In our first demonstration, a computer transformed EMG
signals recorded from four bipolar channels placed on the
forearm of a subject into control signals for an aircraft
simulator. Thus, the processed EMG signals controlled an
imaginary flight stick [2]. EMG samples were processed in
real time using a flexible signal-processing framework
developed in our laboratory. Our feature extraction procedures
included routines to filter out redundant and meaningless
channels with a mutual information metric [3]. The features
were moving averages of the EMG signal from overlapping
windows, where the data within a window are nearly
stationary.1  Our model for mapping EMG signal features to
gestures uses mixtures of Gaussians within a Hidden Markov
Model context. We tested and validated this system with
many trials over a two-year period in three subjects, who flew
and landed high-fidelity simulations of a Boeing F-15 Eagle
or a Boeing 757-200 freighter aircraft. Control of both aircraft
was adequate for normal maneuvers. For the 757, a real-time
landing sequence under neuroelectric control was filmed at
NASA Ames Research Center [on-line demos:    4   ,    5   ]

B. EMG-based Numeric Keypad

We have also found that EMG signals from the arm can
distinguish typing of one key from another on a “virtual
keyboard.” In this demonstration, we programmed a computer
to translate eight bipolar EMG signals recorded from the
forearm into commands for typing the digits 0-9 on a virtual
numeric keypad. We used the same processing system for the
typing interface as for the EMG flight stick.1 However, the
Hidden Markov model was retrained using EMG data recorded
during typing. Tests were performed with random lists of data
to be entered. The typing activity consisted of using the
numeric keypad on a computer keyboard.  One participant was
trained and used for the experiments. He was allowed to type
0 to 9 and “enter.”  In tests, the subject typed the series 1 to 9
and 0 three times, or a series of four different dates consisting
of four digits each. Using such lists, we found that the digits

1 We used overlapping moving averages of the rectified, unfiltered EMG
signal, sampled at either 500 Hz (joystick task) or 2000 Hz (typing task). The
windows contained 128 points and overlapped preceding windows by 96
points.  We tried other types of features such as autoregressive coefficients,
wavelets, and short-time Fourier transforms, but the moving averages
provided the most robust response for everyday use.
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0-9 could be detected with 100% accuracy from the processed
EMG signals. A demonstration of this system was also
recorded at NASA Ames Research Center [on-line demo:    6   ].

Fig. 1. µ-Rhythm filter performance compared with estimates of EEG
complexity for the open-loop mouse motion task in Subject 1.  Lines show the
filter outputs for a series of EEG input windows over time. The heavy line is
for SVD component 1, which was derived from earlier 32-channel
recordings and estimated here with bipolar electrodes FC1 - TP7. The thin
line is for SVD component 2, estimated by AF8 - P4. Vertical lines mark the
times when real or imagined hand motions began. Both components change
near the onset of real or imagined motions, but component 1 shows larger
and more regular changes than component 2. The µ-rhythm filter has
increased output power, or synchronization, before motions and decreased
power, or desycnhronization, during or after motions.  The other measures
(SE, GPER, CER, EW) estimate signal complexity, which change in a
direction opposite to that of µ-rhythm. For a description of each measure,
see the text. A. Real left hand movement. B. Imaginary left hand movement.

III. EEG INTERFACES

A. One-dimensional Graphic Device Control
Previous research has shown that control signals for graphic

devices, such as cursors can be drawn from EEG signals such
as µ and β rhythms [7]. Our approach is to develop a flexible
processing system, which will adapt to different tasks and
users. To do this we explored several tasks and an array of

pattern recognition and machine learning algorithms.
In open-loop tests, we measured EEG during real or

imaginary motions and analyzed motion-related changes in the
EEG signals later. The tasks were mouse motion and keyboard
typing.  In closed-loop tests we used a real-time system, which
provided visual feedback about motion-related EEG signals to
the user. The feedback algorithms included narrow-band linear
filters for signals such as µ-rhythm, broadband filters
developed with adaptive linear filters, on-line measures of
EEG complexity, and support vector machine classifiers [8-9].
In one closed-loop task, the subject moved a needle gauge up
or down by voluntary control of EEG. We trained subjects
with a series of target needle positions. In another task, we
mapped the subject’s EEG signals to left and right turns of a
simulation of a Mars rover vehicle as it traveled at constant
over a Mars terrain database. In both tasks, subjects viewed
either the gauge or the rover on a large video display.

In each task, either 32 or 64 channels of EEG were recorded
with a QuickCap (Neuromedical Supplies, Inc.) using the
extended International 10-20 System [10] with digitally linked
mastoid references (1000 Hz sampling rate, 1 to 30 Hz band
pass). We visually inspected the multi-channel EEG
recordings and hand-selected artifact-free segments that clearly
contained oscillatory activity. On these segments, we used
singular value decomposition (SVD) to reduce the multi-
channel recordings to a small number of SVD components.
Generally, from four to eight SVD components were sufficient
to account for 95% of the variance in the hand-selected EEG
segments. In some experiments, we approximated these
components with a few electrodes, located near the positive
and negative extremes of the scalp distributions of the SVD
loadings. For these recordings we used either a 2-channel EEG
headset (Sensorphone, Allied Products, NY) or disposable
self-adhesive Ag-Cl electrodes (Neuromedical Supplies, VA).
For example, for the mouse motion task in Subject 1, we
approximated the first two SVD components with electrode
pairs FC1-TP7 and AF8-P4, respectively. For the mouse
motion task in Subject 2, we used a set of 12 electrodes that
formed two lines straddling Cz and parallel to the interaural
line, with all electrodes uniformly spaced 4 cm apart. 2

In Subject 1, a 45-year old right-handed male, open-loop
tests showed that µ-rhythm bursts were visible in the raw
EEG. The µ-rhythm spectral peak was centered at 9 Hz. A
narrow-band 6-11 Hz filter was satisfactory for closed-loop
feedback. Using the smoothed filter output power, Subject 1
was able to drive the needle gauge up or down to reach target
locations in two testing sessions. In Subject 2, a 32 year-old
left-handed male, µ-rhythms were not visible in the raw EEG.

Because a filter for µ-rhythm was not clearly satisfactory for
both subjects, we explored other, more general measures of
EEG complexity. The idea here is that regardless of the

2 In all EEG tests, we ruled out EMG contamination of the EEG signals
as source of control. We computed the average event-related band power of
several narrow bands between 0.1 and 50 Hz. for both EEG and EMG
signals in a 1-s long interval, centered on motion onset. For all bands above 5
Hz, EMG power in the band increased during the motion, whereas EEG
power either decreased or remained unchanged.
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specific peaks at which sensorimotor EEG rhythms oscillate,
their synchrony will influence signal complexity. In our
context we define complexity as a measure reflecting changes
in EEG regularity or predictability. Signals corresponding to
periods of high EEG synchrony will be more regular,
predictable, and will have low complexity. Periods of
relatively low EEG synchrony will have high complexity.
We examined coarse-grained entropy rates (CER), Gaussian
process entropy rates (GPER), spectral entropy (SE) and
wavelet entropy (WE). CER is an empirical complexity
measure based on stochastic process entropy rates and the
Kolmogorov-Sinai entropy of nonlinear dynamical systems
[11-12]. CERs have been shown to reflect complexity of
physiological signals [10, 13-14]. If we consider the EEG to
be a zero-mean stationary Gaussian process we can estimate
entropy rates directly from the EEG spectrum [15-16]. Thus
we define GPER to be a linear measure, which can fully
describe an underlying stationary Gaussian process but cannot
describe nonlinear data. SE is a measure which computes
Shannon entropy over the normalized power spectral density
function; i.e., periodogram [17]. There is a clear connection
between GPER and SE as both measures reflect changes of the
frequency spectra of the EEG over different brain states. For
WE, we extend the concept of SE by replacing the Fourier
transform with the discrete wavelet transform [18-19]. So for
WE, we computed Shannon entropy over the wavelet
coefficients at individual resolution levels.

We applied these measures to open loop data from the
mouse motion task in the two subjects.  For each measure,
estimates were computed for the first two SVD components
over time in windows of 2048 samples, which were advanced
in 100-sample steps, and further smoothed with a 9-point non-
causal running mean (Fig. 1). For Subject 1, three measures,
SE, GPER, and CER, reflected changes in EEG synchrony or
complexity at nearly the same times as the µ-rhythm. The WE
measure correlated poorly with µ-rhythm. For component 1,
the correlation coefficients of each measure with µ-rhythm in
the real-motion condition were r =-.87, -.87, -.87, and -.62,
for SE, GPER, CER, and WE, respectively. The
corresponding correlations for the imaginary condition were r
= -.85, -.81, -.79, and -.55. All correlations were significant
(t-test, p < 001). Tests of Spearman rank order correlations
produced the same results, but with lower values of r (-.49 to
-.75). Qualitatively similar results were obtained for Subject
2.  We completed several real-time tests and demonstrations of
EEG-based control of the Mars rover using complexity
measures. For Subject 2, we recorded a demonstration of one
of the sessions in which the CER served as the control signal
[on-line demo,    20   ].

B. EEG-based Typing
For the EEG-based typing tasks we sought to detect the

periods of physical keyboard typing activity from EMG-free
EEG recordings and to use linear models or machine-learning
algorithms to translate the EEG signals into interface
commands. We did not seek to identify which keys were
pressed. We sought to discriminate typing from rest and also

to discriminate left- from right-hand typing. Our approach was
the same as for the motion control tasks: multi-channel EEG
recordings were reduced to a few SVD components. These
components served as inputs to filters or algorithms that
tracked typing behavior. We used the same two subjects who
performed the mouse motion tasks and a third subject, a 47-
year old right-handed male. Our results are limited to open-
loop tests with real motion, and do not imply that
classification of EEG is possible without the motor task.

For both subjects, we collected six five-minute runs
consisting of typing the keys A or F with the left pinkie and
index fingers, or typing the keys J or ; (semicolon) with the
right index and pinkie fingers, or alternating use of the left
and right hands within a single run. Typing consisted of self-
paced bursts of keystrokes lasting about five seconds followed
by about10 seconds of rest. In other tests, subjects pressed a
single key and then rested for about 10 seconds. The EEG was
sampled at 1000 Hz, digitally band-passed from 1 to 30 Hz,
and re-sampled at 100 Hz. EMG data from the left and right
forearms were recorded with four pairs of electrodes placed on
the wrists and upper forearms. EMG was sampled at 1000 Hz,
digitally band-passed from 30 to 150 Hz, then re-sampled at
300 Hz and rectified. To model typing behavior using EEG,
we tested three different types of algorithms:
• µ-Rhythm filter: a linear FIR filter with a pass band

centered on the peak of µ-rhythm signals observed near
electrodes C3 or C4 in the subject’s resting EEG.

• Adaptive linear combiner (ALC): the Widrow-Hoff LMS
algorithm [21] was used to model periods of the EMG
signal corresponding to rest using the EEG time series.

• Support vector classifier (SVC): we used the LIBSVM
software for linear support vector classification [22, 23].

We found that the µ-rhythm filter was inadequate to model
the relationship between EEG and periods of typing or rest.
We next explored modeling typing and rest segments with an
ALC. Here we found that for Subject 1 a 50-tap ALC was
sufficient to track the motion and rest periods associated with
typing. For Subject 2, who had no clear µ-rhythm, a 500-tap
ALC also tracked rest and typing. The results suggest that
EEG signals associated with typing can serve as an index of
the typing activity. A previous report using a different task
drew a similar conclusion [24].

With an ALC, it is possible to freeze adaptation after
training and plot the spectrum of the transfer function (Fig. 2).
For Subject 1, both the 50-tap and 500-tap filters converged to
a set of simple, unimodal transfer functions that favored
frequencies below 10 Hz. For subject 2, the transfer functions
appeared to be bimodal, with one broad peak in the 5 Hz to 10
Hz range and another broad peak in the 10 Hz to 15 Hz range.
In the 500-tap filters for subject 2, a third broad peak is
present in the 20 Hz to 25 Hz range.

The ALCs were trained to use EEG-SVD component inputs
to model EMG activity exclusively during rest periods. So the
ALC output is high during the periods of rest and low during
typing. Thus the filter output serves as a rest detector, or
conversely, the filter error serves as a motion detector. For
Subject 1, the 50-tap filter produced higher output during rest
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Fig.  2.  Transfer functions of the 50-tap  (A) and 500-tap (B) ALCs trained
to predict rest or right-hand typing periods for the first four SVD EEG
components. Typing consisted of bursts of alternating keystrokes using pinkie
and index fingers for a few seconds, followed by a few seconds of rest.

than during typing (Fig. 3). For Subject 2 (not shown), the
500-tap filter performed in a similar fashion.

For the conditions in which typing consisted of single
keystrokes followed by rest, the ALC filters (and some
nonlinear variants) did not serve well for discriminating
typing from rest. To solve this problem we attempted to
classify EEG segments as either motion or non-motion using
windowed EEG signals as inputs to a SVC. Subject 3
performed five 5-minute runs of single-key typing. In each of
the first four runs the subject typed for a few seconds using
either the left- or right-hand then rested for a few seconds. In
the fifth run, the subject alternated between right- and left-
hand typing with rest periods in between. Filtered, 64-channel
EEG signals served as inputs to the SVC. The data were
digitally low-pass filtered at 30 Hz and down sampled to 128
Hz. Successive 128-point segments (1 second of data, with
75% overlap) were labeled as non-motion, left-hand motion,
or right-hand motion. Periods were classified as motion when
the mean of the corresponding left- or right-hand EMG signal
was greater than a predefined threshold.  A linear SVC was
trained on EEG signals from either the odd- or even-numbered
runs and tested on the remaining runs. SVC results for left-
vs. right hand typing were inconclusive, with accuracies near
60%.  However, the SVCs successfully classified motion vs.

non-motion with accuracies between 78% and 91%. In the
most general case -- training with all four initial runs and
testing with the final run of mixed hand motion -- the
classification accuracies for rest vs. left-hand typing, rest vs.
right-hand typing, or rest vs. either hand typing were 85%,
82%, and 88%, respectively. Increasing the EEG bandwidth
by re-filtering with a 64 Hz cutoff did not substantially change
these values (respectively: 84%, 87%, and 87%), suggesting
that EMG artifact did not contribute to the classification.

We also analyzed the weights derived using linear SVC as
we did for the ALCs. A spectral analysis of the support vector
weights revealed a prominent peak at 18 Hz, which was well
defined over centro-parietal electrodes C1, C2, Cp1, and Cp2.
We found in a separate analysis that reducing the 64-channels
to six channels, including these four, F1 and F2 allowed for
classification accuracy of 90% for the test in which the four
initial runs served as training data for the fifth run.

Fig. 3. Performance of the ALC on test data in Subject 1 over time, showing
tracking of the motion and rest periods.  The upper graph shows the filter
output; lower graph shows the rectified EMG time series. Shaded regions
correspond to continuous left-hand finger tapping (lower) or rest (upper).
Because the filter was trained to model the EEG signals during the rest
periods, periods of motion correspond to low filter output power. This is
because the EEG signals during motion are different than during rest, and so
do not match the filter derived for EEG signals during rest periods.

IV. NON-CONTACT SENSOR DEVELOPMENT

NASA Ames Research Center is working with Quantum
Applied Science and Research, Inc. (QUASAR) to develop
new sensors for neuroelectric recordings. These sensors can
measure the electric potential in free space and so do not
require resistive, or even good capacitive coupling to the
subject. The principal sensor innovation is providing high
input impedance for the electrode that senses the free space
potential, while accommodating the input bias current of the
amplifier. The input capacitance of present electrometer grade
amplifiers is of order 1-3 pF. This allows us to arrange the
coupling capacitances of the electrometer to yield a near ideal
measurement of the bioelectric potential.

Despite its small size, the new sensor is approximately 100
times better than prior electric potential sensors [25]. At 10 Hz
it has comparable sensitivity to conventional resistive contact
(dry or wet) electrodes. In the off-body mode the sensor can
make an accurate measurement through clothing. The sensor
also has a broadband response from 0.01 Hz to 10 kHz,
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Fig. 4. Power spectrum of recordings from QUASAR and Ag-Cl electrodes
in a 21-y old male subject. The Quasar sensor tracks the main features of
EEG spectrum seen in the Ag-AgCL electrode recordings. Including the
peak near 10 Hz, which reflects endogenous alpha rhythm. The line at 60
Hz is noise from the main power lines resulting from imperfect shielding.

proving sufficient bandwidth to measure EEG and EMG, and
essentially all other bioelectric signals of interest.

In our initial tests, we have made direct comparisons
between surface recordings of EMG and EEG with non-contact
recordings of the same signals.

A. EMG Tests.

We recorded EMG from 2 surface Ag-AgCl electrodes
spaced 2 cm apart on the forearm over the flexor carpi radialis.
The subject was asked to make a fist and this signal was
recorded for multiple trials. Then these wet electrodes were
removed and replaced by a QUASAR non-contact E-field
sensor and the subject repeated the fist clenching exercise. The
non-contact sensor recordings tracked the conductive electrode
EMG recordings well in the range from 500 Hz to 2000 Hz.

B. EEG Tests.

We recorded EEG from 8 surface Ag-AgCl electrodes
spaced 4 cm apart and lying on lines 2 cm anterior or posterior
to Cz, running from left to right, all referred to average
mastoids with ground at AFz. A QUASAR non-contact E-
field sensor was tested at the points lying in between the EEG
electrodes. EEG was recorded with a Neuroscan Nuamp at gain
of 19, band pass 0.1 to 300 Hz, and sampling rate of 1000.
The Non-contact sensor tracked the main features of the EEG
spectrum seen in the Ag-AgCL electrode recordings (Fig. 4).
For example both recordings show a clear peak in the
spectrum near 10 Hz, which reflects endogenous alpha rhythm.

V. DISCUSSION

The EMG-based joystick and typing tasks were chosen to
replicate something with which computer users are already
familiar. These traditional types of interfaces are certainly not
suitable for gesture-based systems as they force unnatural and
unintuitive movements. Signal processing and machine
learning are maturing to a point whereby methods such as
hidden Markov models are suitable for ordinary laptops

without special hardware, however the user interfaces are still
2-D mouse based systems. The ultimate trial of our EMG
methodology will be to have a system with a more natural
gesture command interface. This could then be used to test the
performance of EMG-based systems for everyday use by
regular users. Once multiple users have been run on multiple
tasks we will then be able to form a usability assessment.

Our EEG-based developments show that 1-D control of a
graphic device is feasible as a human computer interface. For
different subjects different algorithms may be required, such as
µ-rhythm filters or complexity measures. Our system is
programmed to allow rapid switching among these algorithms
or parallel use of the algorithms. We have demonstrated
control of a needle gauge and a rendition of turning a Mars
rover simulator left and right in real time.

We found that the type of task and the qualities of EEG in
a subject interact with the signal processing requirements of
the interface. In the simplest case, a narrow band-pass filter
tracked 1-D continuous motion for a subject with clear µ-
rhythm.  Other, more general measures, such as SE, GPE, and
CER tracked continuous motion in a subject who did not have
a clear µ-rhythm. Our data sample is too limited to allow us
to assess the relative discriminative power of the various
measures – we can only show that several measures, which use
the full EEG spectrum, provide information similar to that
given by a µ-rhythm filter. Such measures could be useful in a
wider range of subjects, especially those who do not have a
clear µ-rhythm. In the typing tasks, more elaborate filters,
such as an ALC or the SVC-derived filters were required. As
the complexity of the task increased from 1-D motion to
typing with different fingers on right and left hands, we found
that increasing amounts of data and algorithmic complexity
were required. For the single-key typing task, as many as
8192 coefficients (64 channels by 128 samples) were used in
the SVC. However, we also found that analysis of the SVC
weights could reduce the number of channels from 64 to six
(or 768 coefficients) without sacrificing accuracy. In any case,
the computational demands for using these algorithms in real-
time are modest and do not pose a barrier to applications.

At least two serious limitations apply to our data. First, the
number of subjects is small. This was necessary to allow us
time to explore a wide range of algorithms. Second, our
experiments are qualitative and lack statistical and quantitative
metrics, such as bit rate, as used in other BCI studies. For the
present, we must present these results as merely being
indicative of promising BCI approaches for device control.

Our initial findings with the QUASAR non-contact sensors
show that it is possible to record both EMG and EEG signals
of high fidelity without a conductive link to the body. The
bandwidth and gain of these sensors are appropriate for
practical applications.
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